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The United States experienced historically high numbers of mea-
sles cases in 2019, despite achieving national measles vaccination
rates above the World Health Organization recommendation of
95% coverage with two doses. Since the COVID-19 pandemic be-
gan, resulting in suspension of many clinical preventive services,
pediatric vaccination rates in the United States have fallen precip-
itously, dramatically increasing risk of measles resurgence. Previ-
ous research has shown that measles outbreaks in high-coverage
contexts are driven by spatial clustering of nonvaccination, which
decreases local immunity below the herd immunity threshold.
However, little is known about how to best conduct surveillance
and target interventions to detect and address these high-risk
areas, and most vaccination data are reported at the state-
level—a resolution too coarse to detect community-level cluster-
ing of nonvaccination characteristic of recent outbreaks. In this
paper, we perform a series of computational experiments to as-
sess the impact of clustered nonvaccination on outbreak potential
and magnitude of bias in predicting disease risk posed by measur-
ing vaccination rates at coarse spatial scales. We find that, when
nonvaccination is locally clustered, reporting aggregate data at
the state- or county-level can result in substantial underestimates
of outbreak risk. The COVID-19 pandemic has shone a bright light
on the weaknesses in US infectious disease surveillance and a
broader gap in our understanding of how to best use detailed
spatial data to interrupt and control infectious disease transmis-
sion. Our research clearly outlines that finer-scale vaccination data
should be collected to prevent a return to endemic measles trans-
mission in the United States.

measles | epidemiology | simulation model | disease dynamics |
vaccination clustering

The Global Vaccine Action Plan set a goal of measles elimi-
nation in five World Health Organization (WHO) regions by

2020. However, re-emergence of measles in ostensibly post-
elimination settings and slow progress in endemic settings have
thwarted these international control efforts, with 187/194 (96%)
of WHO member states reporting measles cases in 2019 (1).
Globally, the first half of 2019 witnessed the most reported
measles cases since 2006, with 791,143 suspected cases in 2019,
compared to 484,077 in 2018, a 63% increase (2, 3). Recent
drops in vaccination coverage have threatened the WHO Amer-
ican Region’s measles elimination status, attained in 2000 (4).
In the United States, a 2014 measles outbreak originating at

Disneyland was the largest, most-publicized outbreak event since
the declaration of elimination (5). Majumder et al. estimated
that the vaccination rate among those infected in this outbreak
was between 50 and 86%, much lower than California’s state
average of 92.8% (±3.9%) (6, 7) and the national average of
91.9% (6). Local variability in measles vaccine coverage likely
contributed to the size of the outbreak, with Pingali et al. finding

93 regions, or “coldspots,” encompassing 31% of California’s
primary schools, where many kindergarteners were not up-to-date
for recommended vaccinations (8). This demonstrates how fine-
scale clustering of nonvaccination can increase the likelihood of
outbreaks while “flying below the radar” of statewide statistics.
Such exemption clusters have also been responsible for outbreaks
of pertussis in Michigan (9) and Florida (10) and of measles in
Oregon (11). Vaccination heterogeneity is a key threat to measles
elimination and control: in the United States alone, 2019 saw
1,282 cases of measles in 31 states, the most since 1992, making a
return to endemic measles likely if these trends are not rapidly
reversed (12).

Redefining Vaccination Coverage Targets
To meet global elimination goals, WHO has set vaccination
coverage targets of 95% for the first and second doses of the
pediatric measles-containing vaccine (MCV) (13, 14). High cov-
erage of MCV is necessary because measles is highly contagious
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with a basic reproduction number (R0) of 12 to 18, among the
highest known values, although estimates of the R0 are quite vari-
able (15, 16). Although the measles–mumps–rubella vaccine is
highly immunogenic, with two doses conferring 97% protection
(17), the proportion of the population that needs to be vaccinated
or have natural immunity from prior disease to prevent outbreaks,
known as the critical vaccination fraction (Vc)*, is nonetheless very
high, around 94 to 95% (7, 18). A key assumption underlying most
estimates of Vc is that the population is evenly mixed and that all
susceptible, infectious, and immune individuals contact each other
with equal probability. However, when nonvaccinated individuals
are geographically clustered, this formula can underestimate Vc by
as much as 3%, so that outbreaks remain possible despite statewide
vaccination coverage targets being met or exceeded (19).

What Is the Right Scale of Surveillance?
While the role of heterogeneous mixing and infectiousness in
populations in increasing outbreak risk for vaccine-preventable
diseases (VPDs) has been demonstrated in prior studies (8, 9,
20–26), public health surveillance systems typically report vac-
cination coverage at the county and state level, obscuring this
risk. For example, in Michigan, 4.54% of kindergarteners state-
wide had vaccination waivers for the 2018 to 2019 school year,
meeting the WHO threshold of 95% overall vaccination. That
same year, a large measles outbreak occurred in Oakland County,
where the waiver rate was 7.14%, but school-district waiver rates
ranged from 0 to 23.4%, and two schools reported >50% waivers
(Fig. 1A). Additionally, many clinical preventive services have
been suspended in the wake of the COVID-19 pandemic, with
many individuals fearful of doctors and nonemergent visits
delayed, which has led to plummeting pediatric vaccination
rates nationally; an estimated 400,000 fewer MCV doses were
ordered from January 6 to April 18, 2020 than were ordered
over the same period last year (27). In Michigan, vaccination
rates have dropped to dangerously low levels for measles in
particular, with only 70.9% of 16-mo-old children currently up
to date for MCV, down from 76.1% last year (28). As such,
understanding the role that clustering of nonvaccination for
measles plays in outbreak risk is especially important as existing
clusters are likely to be magnified by plummeting pediatric
vaccination rates. Furthermore, elucidating at what scale ag-
gregate surveillance data are too unreliable to capture such
fine-scale heterogeneity will be necessary to successfully im-
plement control strategies for both emergent measles outbreaks
and ongoing COVID-19 infections. Because granular vaccina-
tion data are not readily available to researchers, this paper
uses a simplified, schematic model to provide proof-of-concept
and understand the mechanisms by which clustering of non-
vaccination, and aggregation of such data, impact population
health and outbreak risk.

Methods
Simulated Environment. To understand how aggregation of surveillance data
may impact outbreak risk assessment, we constructed a spatial measles
transmission model in a simulated city of 256,000 people laid out on a 16 × 16
grid. Our model includes four nested levels analogous to those found in real
vaccination data: 1,000-person blocks (1 cell), 4,000-person tracts (4 cells),
16,000 person neighborhoods (16 cells), and 64,000 person quadrants (64
cells). This configuration allowed us to fix the population average vaccina-
tion coverage while varying the spatial distribution of coverage at multiple
scales to isolate the specific impact of clustering at different levels. Our
model encoded contact between individuals within each block and with
contiguous blocks, as school-aged children have primarily local contacts.

Contact between blocks used queen’s contiguity, in which all surrounding
cells are considered neighbors (cells which share an edge or a corner with
the index cell, such that cells in the center of the grid would have eight
neighbors). The spatially dependent force of infection was split such that
50% of transmission occurred within cells, and 50% of transmission was split
between all neighboring cells equally. We fixed population-wide measles
vaccine coverage at the WHO threshold for measles (95%) while varying the
spatial distribution and intensity of local clustering of vaccination (Fig. 1 B
and C). In all simulations, R0 was fixed at 16, and the average community
vaccination coverage was 95%, which represents a scenario in which a
completely homogeneous model would predict that an outbreak is
not possible.

Clustering Motifs of Nonvaccination. Clustering motifs were generated using
stratified random sampling at the quadrant, neighborhood, tract, and block
levels to produce different landscapes and spatial distributions of non-
vaccinators within this population. The motifs were created by sampling
12,800 (5% of the total population) total unvaccinated individuals into the
environment’s individual cells with probability proportional to the intensity
of clustering at each of the four nested spatial levels, allowing us to explore
the difference in outcomes between motifs with equivalent vaccination
coverage but with large-scale vs. fine-scale clustering and vice versa. A de-
piction of this process is shown in SI Appendix, Fig. S1. In all simulations, we
assigned the top-left quadrant to be the most highly clustered quadrant and
explored scenarios in which 85% of the nonvaccinators were in that quad-
rant and the remaining 15% were evenly distributed among the remaining
quadrants, to the least clustered case in which a quarter of nonvaccinators
were deposited in each quadrant. Three additional sets of probabilities
generated the full set of clustering motifs: 70, 58, and 40% of non-
vaccinators in the top-left quadrant, distributing the remaining 30, 42, and
60% of nonvaccinators evenly among remaining quadrants, respectively. Of
the 625 potential clustering motifs representing every combination of
probabilities, 336 were consistent with a scenario of 95% vaccination cov-
erage at the population level, i.e., where the proportion of nonvaccinators
in each cell was ≤1.

Model Structure. We modeled transmission using a deterministic, compart-
mental, Susceptible-Infected-Recovered (SIR) model where the clustering
motifs representing different landscapes of nonvaccination were used as
initial conditions for the compartmental transmission model (SI Appendix,
Fig. S2) (19, 23). For simplicity, no vital dynamics were included due to a
simulation time of 1 y.

Measuring Clustering. Clustering of nonvaccination in each motif was mea-
sured using Moran’s I, a measure of global spatial autocorrelation (29), and
the isolation index, a measure of the proportion of within-group contacts in
a population with two main subgroups (i.e., vaccinated and unvaccinated)
(30). Moran’s I (SI Appendix, Supplementary Methods, Eq. S2) ranges
from −1 to 1, where a value of −1 corresponds to perfect clustering of dis-
similar values (e.g., high-low clustering), 0 indicates no autocorrelation, and
1 indicates perfect clustering of similar values (e.g., high-high) (29). By
contrast, the isolation index (SI Appendix, Supplementary Methods, Eq. S3)
measures exposure, specifically the extent to which nonvaccinated individ-
uals contact each other: if there is little systematic separation of the groups,
the value of isolation will approach the global percentage of nonvaccinators
and will approach 1 when nonvaccinators are highly concentrated in one
geographic location (30).

Measuring Aggregation Effects. To examine the how the resolution of vac-
cination data impacts model-based risk predictions, we created counterfac-
tual simulations to see how much error was incurred by coarsening the
spatial vaccination data. This is analogous to quantifying the “type M” er-
rors of magnitude described by Gelman et al. (31) The clustering motifs
described above were regarded as the “true” vaccination data, with reso-
lution at the block level. The grid was coarsened by moving up the levels of
aggregation shown in Fig. 1: block-level data were aggregated up to the
tract level, where the four cells that belong to each tract were averaged and
nonvaccinators were redistributed to the contributing cells. This process was
then repeated at the neighborhood and quadrant level. Once these ag-
gregated motifs were generated, we ran the SIR model on the coarsened
grids to see how the predicted case burden differed from that of the block-
level, true data, using the difference in these predictions to characterize the
bias from aggregating this data.

*This can be calculated as R= R0p((1−(VcpVE)), where 1−(VcpVE) is the proportion of the
population that remains susceptible after vaccination. The Vc can be expressed in terms
of infectiousness and vaccine efficacy: Vc=1− 1R0VE, where VE is the proportion of vac-
cinated individuals protected from disease, or the vaccine efficacy (19).
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Statistical Analysis and Simulation Protocol. Simulations were conducted in R
version 3.6.0 using the deSolve package. The SIR model was simulated across
the clustering motifs, and the outbreak potential and cumulative incidence
were calculated for four scenarios: an initial seed case dropped in the center
of each quadrant to capture spatially heterogeneous outcomes based upon
the location of the introduced case. The attack rate (AR) after 1 y of simu-
lation time was calculated, with AR = 1 y cumulative incidence/initial sus-
ceptibles. For each motif, 10 simulations were run for a seed case dropped in
each quadrant to capture stochastic variation due to the multinomial
probability distribution used to generate the motifs themselves, generating
40 simulated runs for each motif. The Moran’s I and isolation index of the
starting motifs were calculated by generating the motifs 30 times each and
taking the average value to account for sampling differences. The isolation

index was normalized using the following formula: normalized isolation =
(isolation index – minimum isolation)/(maximum isolation – minimum isola-
tion) for easier interpretation. For assessing outbreak potential, we defined
an outbreak as a simulation with five or more secondary cases. Code used to
generate all simulations, motifs, and datasets can be found at https://github.
com/epibayes/Measles-Spatial-Clustering-and-Aggregation-Effects/ (32).

Sensitivity Analysis. Numerous sensitivity analyses were conducted to eval-
uate the robustness of our findings against different assumptions. Our
baseline model uses density-dependent transmission in which the force of
infection for neighbor-driven transmission is dependent on the number of
neighbors, and we assessed the model instead with a frequency-dependent
force of infection. Additionally, the baseline model assumed that 50% of

A

B

C

Fig. 1. Impact of spatial aggregation of vaccination data on coverage estimates. (A) Vaccination coverage data from Oakland County, Michigan, at five
different levels of spatial scale: block groups, census tracts, school districts, congressional districts, and the county level. (B) Schematic illustrating the spatial
model used in this study with a 256-grid cell environment, each of which contains 1,000 individual people, divided into spatial scales of “blocks” (all grid cells),
“tracts” (groups of 4 cells), “neighborhoods” (groups of 16 cells), “quadrants” (groups of 64 cells), and, finally, the entire vaccination “environment” (all 256
cells aggregated to one unit), the level at which overall vaccination percentages are fixed for analysis (i.e., at 95 and 98%). (C) Example data from one
simulated set of vaccination conditions, fixed at 95% overall vaccination, showing the impact of aggregation to these different scales on loss of granularity of
block-level data.
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transmission occurred within the cells, and 50% was divided between
neighboring cells. We varied this percentage of between-cell transmission
from 10 to 75% to examine the impact of changing neighbor-driven trans-
mission. Finally, the overall percentage of vaccination was modified from

the baseline scenario of 95%, with sensitivity analyses using 94, 98, and 99%
overall vaccination (yielding a total number of possible motifs that did not
exceed cell-level populations over 1,000 of 296, 543, and 620, respectively).
We also assessed combinations of different vaccination percentages and

Fig. 2. Distribution of nonvaccination at baseline (Left) and case burden after 1 y (Right) for four selected clustering motifs with 95% overall vaccination
coverage (n = 12,800 nonvaccinated individuals at baseline). In each case, a seed infection was introduced into the top left quadrant and cases spread
throughout and beyond the demarcated boundaries of high-risk unvaccinated regions, as can be seen for motifs 1 and 2, where there is a band of nonzero
case burden around the high-risk cluster of nonvaccinated individuals, even though the vaccination rate in this region is 0 to 1%. For motif 3, the four foci of
nonvaccination with >25% unvaccinated proportions are the hardest hit in terms of attack rate after 1 y, with >150 cases per cell (>15% attack rate), but the
surrounding cells, with 5 to 10% nonvaccination, see 10 to 50 cases after 1 y, representing a 1 to 5% attack rate. Finally, for motif 4, a fine-scale clustering
pattern creates local cells with high attack rates, but all cells have a nonzero attack rate.
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between-cell transmission rates to explore the impact of varying both
parameters at once.

Results
Impact of Clustering on Outbreak Probability and Size. The intensity
of clustering of vaccination and contact between nonvaccinators
was assessed using Moran’s I (29) and the isolation index (30). In
both univariate and multivariate models, for 95% overall vacci-
nation, a change from the minimum to maximum values of
normalized isolation was associated with an 80% increase in AR
(∼7,325 cases), while no association was observed for Moran’s I
(SI Appendix, Table S1). This suggests that isolation better cap-
tures the central role of clustering of susceptible individuals than
does Moran’s I, which is agnostic about the nature of clustering
measured (i.e., of nonvaccination or vaccination).

Impact of Clustering on Outbreak Risk and Magnitude. Simulations
from this model at 95% coverage across all possible clustering
motifs (n = 296) yielded an average cumulative AR of 35.6% (SI
Appendix, Table S4). Sensitivity analyses evaluating the cumu-
lative incidence and AR at 94, 98, and 99% coverage showed
that large outbreaks were possible at all coverage rates when
nonvaccination was spatially clustered. By contrast, a full
environment-level simulation (with spatially randomly distrib-
uted nonvaccinators, i.e., no encoded clustering), revealed that,
at 95% vaccination coverage and above, there was fewer than 1
secondary case, and only 1.24 secondary cases were observed for
94% overall vaccination, indicating that herd immunity is upheld
when there is no spatial clustering of nonvaccination (SI Ap-
pendix, Table S5). In all simulations, when the initial case was
seeded in the quadrant inhabited by the majority of non-
vaccinators, a larger outbreak was predicted as compared to
seeding cases in the other quadrants, with introductions to the
quadrant farthest in cartesian distance from the low-vaccination
area, resulting in the fewest overall cases and the longest
time-to-peak of cases. Most cases occurred in cells with low
vaccination rates, although there was spillover to adjacent cells
due to high levels of infection pressure from their low-coverage
neighbors (Fig. 2). Sensitivity analyses of frequency-dependent
transmission yielded similar cumulative incidence counts to the
density-dependent baseline model (SI Appendix, Table S6).

Our simulations consistently showed that increasing clustering
at each level of aggregation (blocks, tracts, neighborhoods, and
quadrants) corresponded to a higher cumulative incidence of
cases (SI Appendix, Figs. S7–S10). In addition to exploring the
outbreak size as an outcome, we evaluated outbreak probability,
defining three thresholds for an outbreak: 5, 10, and 20 cases
over the course of 1 y. For 94% overall vaccination, 93.5% of
simulation runs yielded outbreaks (defined as five or more
cases), and there was a 92.3% probability of an outbreak with a
threshold of 20 cases (SI Appendix, Table S7, and Figs. S15 and
S16). For 95% overall vaccination, 89.0% of simulation runs
generated a 5+ case outbreak, and 87.4% of simulation runs
generated a 20+ case outbreak. For 99% vaccination coverage,
the outbreak probability was much lower: 19.3% of simulation
runs generated 5 or more cases, and 18.1% of runs generated 20
or more cases. These results show that outbreak probability de-
creases as coverage increases, yet in this clustered landscape of
nonvaccination, even for 99% overall vaccination rates, there
was a sizable proportion of simulation runs that were able to
generate outbreaks.

Impact of Measurement Scale on Outbreak Size Prediction Errors.
Our design analysis consisted of taking the block-level “ground
truth” results of each simulation and aggregating these data up
to each of the levels in Fig. 1. This resulted in large downward
biases in both the simulated probability of observing outbreaks
and their predicted size. The expected outbreak size for simu-
lations at 95% overall vaccination was predicted to be 3,886
(AR = 30.4%) cases using unaggregated data; 2,122 (AR =
16.6%) using tract-level aggregation (45.4% reduction); 911
(AR = 7.1%) using neighborhood-level aggregation (76.5% re-
duction); and no secondary cases when aggregated to the
quadrant level (99.9% reduction) (Fig. 3). Fig. 4 illustrates how
this aggregation process obscures fine-scale spatial heterogeneity
for three selected motifs, where three very different underlying
patterns of nonvaccination and resultant outbreak potential
converge to an identical motif with an expected AR of 51% when
aggregated to the quadrant level. Across all motifs, the down-
ward bias in the estimated isolation index increased with the
intensity of aggregation (SI Appendix, Fig. S11).

Fig. 3. Impact of aggregation on estimated outbreak risk. Cumulative incidence at four different levels of vaccination coverage: 94, 95, 98, and 99%,
including nonaggregated vaccination data (block-level) resolution to tract level (4-cell) resolution, to neighborhood (16 cell), and, finally, quadrant-level
(64 cells) shows the reduction in estimated case burden as aggregation increases, a pattern that holds true across all levels of vaccination.
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Aggregating vaccination data resulted in consistent underes-
timates of outbreak potential, with this bias growing as a function
of the intensity of clustering in the input motif and the level of
aggregation (Fig. 5). This trend was observed across all motifs,
with models using data aggregated to the tract level predicting 41
to 65% fewer cases than simulations using nonaggregated data,
and neighborhood-level aggregation resulting in 72 to 99% fewer
cases detected (at 94 and 99% overall vaccination, respectively)
(SI Appendix, Table S8). Quadrant-level aggregation resulted in
greater than 90% reduction in detected cases at all tested vac-
cination levels. The proportion of expected cases plotted by
isolation index of the initial motif can be seen in Fig. 5A; how-
ever, it is important to recall that an increasing isolation index
corresponds to an increased simulated cumulative incidence, and
thus higher levels of aggregation yield reduced accuracy in pre-
dicting outbreak potential, with greater numbers of cases missed,
as vaccination landscapes become more clustered (Fig. 5B). This
phenomenon was observed for all simulated vaccination levels
(SI Appendix, Figs. S12–S14).

Discussion
Our results illustrate how failure to account for fine-scale het-
erogeneity in susceptibility can result in overly optimistic estimates

of outbreak potential. This mismatch between assumptions of ho-
mogeneous mixing which underlie the classical calculation of the Vc
and the reality of local clustering of nonvaccination can lead to
missed opportunities for preventing outbreaks. This is underscored
by the finding that, even at 99% overall vaccination coverage,
theoretically far exceeding the Vc for measles, deviations from
homogeneity permitted outbreaks to occur. We found that in-
creasing isolation of nonvaccination predicted an increased
cumulative incidence at all vaccination levels, suggesting that
the isolation index can be used to assess area-level outbreak
vulnerability.
Additionally, our models show that aggregation-based esti-

mates of outbreak risk relying on assumptions of homogeneity
have the potential to mischaracterize the population at risk. As
fine-scale vaccination data were aggregated, or “coarsened,” a
large downward bias resulted in the projected number of cases,
which grew with successive levels of aggregation. This has im-
mediate implications for vaccine-coverage surveillance in the
United States, highlighting that finer-scale data are needed to
fully understand community susceptibility to outbreaks of mea-
sles and other VPDs. This accords with Truelove et al. (19) and
Brownwright et al.’s suggestions (33) that setting the classical Vc
as a national or state-wide vaccination target may ultimately

Fig. 4. Aggregated vaccine coverage systematically downplays outbreak risk. Aggregation from “true” 256-cell (block-level) resolution to tract level (4-cell)
resolution to neighborhood (16-cell), and, finally, to quadrant-level (64-cell) resolution using a starting vaccination motif with overall vaccination at 95%.
Three different motifs with different clustering patterns were subsequently aggregated up these three levels and yielded the same aggregate motif at the
quadrant level, illustrating that large-scale vaccination data can mask significant heterogeneity at finer scales.
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permit endemic transmission, necessitating a greater focus on
assessments of finer-scale vaccination levels. Similarly, Tatem
(34) argues that fine-scale analysis can better highlight commu-
nities at risk, although public health surveillance would to need
to be strengthened and enhanced, requiring a greater structural
investment for this to be carried out effectively. Additionally, as
shown in Fig. 1A, regions without available vaccination data are
often aggregated up into areal estimates of vaccination coverage,
propagating errors associated with this missingness upward,
which only further highlights the need for collection and dis-
semination of finer-scale vaccination data in order to make in-
formed decisions about populations at risk.
An important caveat is that, while vaccination data are col-

lected at the school-level for entry requirements, publicly re-
leased data instead are typically aggregated to the county- or

state-level despite the existence of finer-scaled data, represent-
ing a lost opportunity for improving surveillance. Leslie et al.
found that only 20 US states report school-level data, 4 report
school-district level data, 19 report county-level data, and 2 re-
port health-department level data, but only a subset (n = 26)
provide such data online, with 14 states providing data only after
onerous Freedom of Information Act Requests (35). Addition-
ally, the Centers for Disease Control and Prevention receives
state-level vaccination data, which is far from the granular scale
needed to set national policies that are sensitive to local vul-
nerability to measles (36).
Identifying the scale at which vaccination data are reported

and available for analysis is not straightforward and comes with
important trade-offs between privacy, feasibility, and cost. Many
policy benchmarks are set at the national level, which may fail to

A

B

Fig. 5. Underestimate of outbreak risk grows with intensity of isolation of nonvaccinators. (A) Proportion of estimated cases identified, treating the block-
level or individual-cell level simulation results as “truth,” in gray, when motifs are aggregated to the tract, neighborhood, and quadrant levels, sorted by the
isolation index of the starting motif. (B) Difference in number of estimated cases, or cumulative incidence, by aggregation level and isolation index of initial
motif, illustrating greater loss in predicted number of cases as both aggregation level and isolation index increase.
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account for transmission dynamics playing out on a smaller scale,
as coverage estimates of large regions cannot assume herd im-
munity is maintained at the scale of transmission. When defining
such a spatial scale, relevant considerations comprise the po-
tential intervention, the scale of surveillance, the reality of
obtaining high-quality granular data, and the level at which
vaccination coverage estimates are meaningful and actionable.
A number of different spatial scales have been explored in the

literature, with notable heterogeneity in vaccination coverage
identified at the subcontinental level, subnational (33), and re-
gional levels (37). If the geographic level of data is mismatched
to the scale of an intervention (38), reliance on aggregated data
may result in diminished effectiveness of aid and interventions,
leading to erroneous conclusions about what works for pre-
venting VPD outbreaks (39). To address varied findings at dif-
ferent levels of analysis, some authors have also attempted to use
multiple spatial scales, although such studies have yielded poor
predictive ability (40, 41). At the finest spatial scales, such as
human individual movement (42, 43) or mobility data using cell
phone records (44), there is significant potential for the intro-
duction of too much noise, yielding fewer informative results
(45). As such, it is important to acknowledge that more research
must be done to elucidate a feasible and actionable spatial scale
to evaluate vaccination coverage, especially in countries nearing
measles elimination where significant heterogeneity may under-
mine elimination efforts if unidentified.

Strengths and Limitations. This study has many strengths. Much of
the literature surrounding spatial clustering of nonvaccination
utilizes complex methods of identifying “hotspots” of infection in
an environment with many complicating factors surrounding the
reliability and accuracy of geographic and immunization cover-
age data, such as data that is spatially “jittered” to preserve
anonymity (19, 33). Our work provides a much needed proof-
of-concept, illustrating that fixing vaccination coverage and
adjusting only the degree of clustering has large impacts on the
risk and magnitude of outbreaks. Additionally, the literature on
spatial heterogeneity in vaccination coverage is typically focused
on patterns observed in vaccination coverage or serology data.
Our use of simulation in an idealized environment allows for a
better understanding of the implications of the types of cluster-
ing identified in these earlier analyses for outbreak risk.
This study has some limitations as well. We used a SIR model,

which does not use an incubation period (which could be encoded
using a susceptible-exposed-infected-recovered (SEIR) model
with a compartment for latent infection) because the time dy-
namics of transmission were not a key focus of this paper, and
both models will result in the same predictions of epidemic size.
We also did not consider vaccine failure (i.e., assumed 100%
vaccine effectiveness), and thus our results likely underestimate
the number of cases that could occur in a worst-case scenario.
Additionally, we used a deterministic transmission model to
highlight the impact of clustering of nonvaccination and aggre-
gation, yet the occurrence and size of outbreaks is in reality a
function of both stochasticity in the population distribution of
susceptibility—which we model explicitly—and demographic sto-
chasticity in transmission dynamics, which our model omits. The

use of a deterministic model allowed us to focus specifically on the
stochastic variation of the spatial distribution of nonvaccination,
but our results should be interpreted in light of this choice. Finally,
a square grid with fixed population size of 256,000 individuals is a
stylized, simplified representation of a city and is not meant to
directly represent the complexity of real-world contact networks,
but instead seeks to capture a mix of local and nonlocal trans-
mission. Making optimal use of these findings necessitates un-
derstanding how this heterogeneity impacts dynamics in the
context of more heterogeneous and multilayered contact net-
works. Finally, the model’s dynamics are dependent upon our
choice to analyze a population smaller than the critical population
size of ∼400,000 to 500,000, above which endemic circulation
becomes possible. This allowed us to focus on the types of out-
break scenarios that are currently of the most pressing concern,
but limits applications of this research to endemic transmission.

Conclusions
We show that the assumptions of spatially homogeneous vacci-
nation coverage and contact result in an underestimation of the
true number of individuals who need to be vaccinated to prevent
outbreaks. Fine-scale clustering, as measured by high values of
the isolation index, produced scenarios with the greatest out-
break potential. Since such fine-scale vaccination data are not
broadly available in the United States, it is difficult to allocate
resources, plan vaccination strategies, and respond to imported
measles cases in a way that is responsive to this type of localized
clustering. Especially given the ongoing pandemic, it is impera-
tive to better understand and control the spread of preventable
diseases such as measles—focusing on concrete ways to reduce
case burden and health service utilization—as the coming
school year is likely to see unprecedented challenges as COVID-
19 cases grow and the fall influenza season approaches. The
approach here is also likely to have important implications for
managing COVID-19 therapeutic/vaccine distribution, as clus-
tering of susceptibility and immunity are likely to occur in the
communities both least and most hard hit in the first waves of
transmission. As noted by Truelove et al., fine-scale clustering of
the sort described here resulted in the largest increases in the
critical vaccination fraction for diseases with lower values of R0.
This suggests that issues around spatial clustering of suscepti-
bility to COVID-19, which has an R0 roughly four times lower
than measles, may be as or more acute as in the scenarios de-
scribed here (19). This research thus motivates the need not only
for increased vaccination coverage, but also for the collection of
finer-scale vaccination data to create “susceptibility maps” that
can guide policy-makers and health practitioners to preferen-
tially direct resources to those areas at highest risk of outbreaks.

Data Availability.All model code and data generated for this analysis
are available for download on the GitHub Repository: https://github.
com/epibayes/Measles-Spatial-Clustering-and-Aggregation-Effects/ (32).
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